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Vector fields on glm|n(C)-flag
supermanifolds1

E.G.Vishnyakova

Abstract

The main result of this paper is the computation of the Lie super-
algebras of holomorphic vector fields on complex flag supermanifolds,
introduced by Yu.I. Manin. We prove that with several exceptions
any holomorphic vector field is fundamental with respect to the nat-
ural action of the Lie superalgebra glm|n(C).

1 Introduction

It is a classical result that all holomorphic vector fields on a flag mani-
fold in Cn are fundamental for the natural action of the general linear Lie
group GLn(C). More precisely the Lie algebra of holomorphic vector fields
on a flag manifold is isomorphic to pgln(C). Similar statement holds with
some exceptions for flag manifolds that are isotropic with respect to a non-
degenerate symmetric or skew-symmetric bilinear form in Cn. These results
were obtained by A.L. Onishchik in 1959, see example [A] for details.

In [Man] Yu.I. Manin constructed four series of complex compact homo-
geneous supermanifolds corresponding to four series of classical linear Lie
superalgebras: glm|n(C), ospm|n(C), πspn(C) and qn(C), see [Kac] for pre-
cise definitions. The present paper is devoted to the calculation of the Lie
superalgebras of holomorphic vector fields on complex flag supermanifolds
corresponding to the Lie superalgebra glm|n(C). It turns out that under some
restrictions on the flag type all global holomorphic vector fields are funda-
mental with respect to the natural action of the Lie superalgebra glm|n(C).
In case of super-Grassmannians the similar result was obtained in [OS].

In the present paper we study flag supermanifold F
m|n
k|l of type k|l in the

vector superspace Cm|n. Here we put k = (k1, . . . , kr) and l = (l1, . . . , lr)
such that

0 ≤ kr ≤ . . . ≤ k1 ≤ m, 0 ≤ lr . . . ≤ l1 ≤ n and

0 < kr + lr < . . . < k1 + l1 < m+ n.
(1)
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The number r is called the length of F
m|n
k|l . The idea of the proof is to use

results of [OS] and the following fact. For r > 1 the supermanifold F
m|n
k|l is the

total space of a holomorphic superbundle with base space isomorphic to the
super-Grassmannian F

m|n
k1|l1

and the fiber isomorphic to a flag supermanifold
of length r−1. The projection of this superbundle is equivariant with respect
to the natural actions of the Lie supergroup GLm|n(C) on the total space and

base space of F
m|n
k|l .

Let p : M → B be a morphism of supermanifolds. A vector field v defined
on M is said to be projectable with respect to p if there is a vector field v1
on B such that

p∗(v1(f)) = v(p∗(f))

for any f ∈ OB. A vector field v on M is called vertical if it is projected to
0. If p is a projection of a superbundle, then every projectable vector field v
is projected to a unique vector field v1. In [B] the following statement was
proven. If p : M → B is the projection of a superbundle with fibre S with
OS(S0) = C, this is any global holomorphic function on S is constant, then
every vector field on M is projectable with respect to p. Denote by v(M)
the Lie superalgebra of holomorphic vector fields on M. If OS(S0) = C, we
have a map

P : v(M) → v(B).

This map is a Lie superalgebra homomorphism, and its kernel KerP is the
set of all vertical vector fields.

Consider the superbundle F
m|n
k|l . The space of global holomorphic func-

tions OS(S0) was computed in [V3]. It was shown that OS(S0) = C under
some restrictions on the flag type k|l. Therefore, in general all holomorphic

vector fields on M are projectable to the super-Grassmannian B = F
m|n
k1|l1

and
we have the following homomorphism of Lie superalgebras

P : v(F
m|n
k|l ) → v(F

m|n
k1|l1

).

From the equivariance of p with respect to the actions of GLm|n(C) it follows
that the natural Lie algebra homomorphisms

µ : glm|n(C) → v(F
m|n
k|l ) and µB : glm|n(C) → v(F

m|n
k1|l1

)

satisfy the relation µB = P ◦ µ. Assuming that the homomorphism µB is
surjective, in other words assuming that

v(F
m|n
k1|l1

) ≃ pglm|n(C),
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we see that P is also surjective. The main goal of this paper is prove that P
is injective. Then P is invertible and we have

µ = P−1 ◦ µB.

Therefore,
v(F

m|n
k|l ) ≃ pglm|n(C).

The main result of this paper was announced in [V4] in case 0 < kr <
. . . < k1 < m and 0 < lr . . . < l1 < n and the idea of the proof was sketched
in [V1] also in this case. Here we give the proof in general case. Our main
result is the following.

Theorem. Assume that r > 1 and that we have the following restrictions
on the flag type:

(ki, li) 6= (ki−1, 0), (0, li−1), i ≥ 2;

(ki−1, ki|li−1, li) 6= (1, 0|li−1, li−1 − 1), (1, 1|li−1, 1), i ≥ 1;

(ki−1, ki|li−1, li) 6= (ki−1, ki−1 − 1|1, 0), (ki−1, 1|1, 1), i ≥ 1;

k|l 6= (0, . . . , 0|n, l2, . . . , lr), k|l 6= (m, k2, . . . , kr|0, . . . , 0).

Then
v(F

m|n
k|l ) ≃ pglm|n(C).

If k|l = (0, . . . , 0|n, l2, . . . , lr) or k|l = (m, k2, . . . , kr|0, . . . , 0), then

v(F
m|n
k|l ) ≃Wmn ⊂+(

∧
(ξ1, . . . , ξmn)⊗ pgln(C)),

where Wmn = Der
∧
(ξ1, . . . , ξmn).

2 Preliminaries

2.1 Flag supermanifolds

We will use the word “supermanifold” in the sense of Berezin and Leites
[BL]. Throughout we will restrict our attention to the complex-analytic ver-
sion of the theory. Recall that a complex-analytic superdomain of dimension

s|t is a Z2-graded locally ringed space of the form

U = (U0,FU0
⊗C

∧
(t)),

where FU0
is the sheaf of holomorphic functions on an open set U0 ⊂ Cs

and
∧
(t) is the Grassmann algebra with t generators. A complex-analytic
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supermanifold of dimension s|t is a Z2-graded locally ringed space that is
locally isomorphic to a complex-analytic superdomain of dimension s|t. We
will denote a supermanifold by M = (M0,OM), where M0 is the underlying
complex-analytic manifold and OM is the structure sheaf.

Let us give an explicite description of a flag supermanifold in terms of
charts and local coordinates (see also [Man, V3]). Let us take two non-
negative integers m,n ∈ Z and two sets of non-negative integers

k = (k1, . . . , kr) and l = (l1, . . . , lr)

such that (1) holds. The underlying space of the supermanifold F
m|n
k|l is

the product Fm
k × Fn

l of two flag manifolds of types k = (k1, . . . , kr) and
l = (l1, . . . , lr) in the vector spaces Cm and Cn, respectively. Let us fix two
subsets

Is0̄ ⊂ {1, . . . , ks−1} and Is1̄ ⊂ {1, . . . , ls−1},

where k0 = m and l0 = n, such that |Is0̄| = ks, and |Is1̄| = ls, for any
s = 1, . . . , r. We put Is = (Is0̄, Is1̄) and I = (I1, . . . , Ir). We assign the
following (ks−1 + ls−1)× (ks + ls)-matrix

ZIs =

(
Xs Ξs

Hs Ys

)
, s = 1, . . . , r, (2)

to any Is. Here we assume that

Xs = (xsij) ∈ Matks−1×ks(C), Ys = (ysij) ∈ Matls−1×ls(C),

are even elements and elements of the matrices Ξs = (ξsij), Hs = (ηsij) are
odd. We also assume that ZIs contains the identity submatrix Eks+ls of size
(ks + ls) × (ks + ls) in the lines with numbers i ∈ Is0̄ and ks−1 + i, i ∈ Is1̄.
For example in case

Is0̄ = {ks−1 − ks + 1, . . . , ks−1}, Is1̄ = {ls−1 − ls + 1, . . . , ls−1}

the matrix ZIs has the following form:

ZI1 =




Xs Ξs

Eks 0
Hs Ys
0 Els


 .

Here Eq is the identity matrix of size q× q. For simplisity of notation we use
here the same letters Xs, Ys, Ξs and Hs as in (2).
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We see that the sets I0̄ = (I10̄, . . . , Ir0̄) and I1̄ = (I11̄, . . . , Ir1̄) determine
the charts UI0̄

and VI1̄ on the flag manifolds Fm
k and Fn

l , respectively. We
can take the non-trivial elements (i.e., those are not contained in the identity
submatrix) from Xs and Ys as local coordinates in UI0̄

and UI1̄
, respectively.

Summing up, we have defined the following atlas on Fm
k × Fn

l :

{UI = UI0̄
× UI1̄

}

with charts are parametrized by I = (Is). The sets I0̄ and I1̄ also deter-
mine the superdomain UI with underlying space UI and with even and odd
coordinates xsij , y

s
ij and ξsij , η

s
ij , respectively. (As above we assume that xsij ,

ysij, ξ
s
ij and η

s
ij are non-trivial. That is they are not contained in the identity

submatrix.) Let us define the transition functions between two superdomains
UI and UJ that correspond to I = (Is) and J = (Js), respectively, by the
following formulas:

ZJ1 = ZI1C
−1
I1J1

, ZJs = CIs−1Js−1
ZIsC

−1
IsJs

, s ≥ 2. (3)

Here CIsJs is an invertible submatrix in ZIs that coinsists of the lines with
numbers i ∈ Js0̄ and ks−1 + i, where i ∈ Js1̄. In other words, we choose the
matrix CIsJs in such a way that ZJs contains the identity submatrix Eks+ls

in lines with numbers i ∈ Js0̄ and ks−1 + i, where i ∈ Js1̄. These charts

and transition functions define a supermanifold that we denote by F
m|n
k|l .

This supermanifold we will call the flag supermanifold of type k|l. In case
r = 1 this supermanifold is called the super-Grassmannian and is denoted
by Grm|n,k|l.

Let M = (M0,OM) be a complex-analytic supermanifold. Denote by
T = Der (OM) the sheaf of vector fields on M. It is a sheaf of Lie superal-
gebras with respect to the following multiplication

[X, Y ] = XY − (−1)p(X)p(Y )Y X.

The global sections of T are called holomorphic vector fields on M. They
form a complex Lie superalgebra that we denote by v(M). This Lie super-
algebra is finite dimensional in case when M0 is compact. The goal of this
paper is to compute the Lie superalgebra v(M) when M is a flag superman-
ifold of type k|l in Cm|n.

As usual we denote by glm|n(C) the general Lie superalgebra of the su-

perspace C
m|n. It coinsists of the following matrices:

(
A B
C D

)
, where A ∈ glm(C) and B ∈ gln(C).
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Denote by GLm|n(C) the Lie supergroup of the Lie superalgebra glm|n(C).
(See [V5] for more information about Lie supergroups.) In [Man] an action

of GLm|n(C) on the supermanifold F
m|n
k|l was defined. In our coordinates this

action is given by the following formulas:

(L, (ZI1, . . . , ZIr)) 7−→ (Z̃J1, . . . , Z̃Jr), where

L ∈ GLm|n(C), Z̃J1 = LZI1C
−1
1 , Z̃Js = Cs−1ZIsC

−1
s .

(4)

Here C1 is an invertible submatrix in LZI1 that consists of the lines with
numbers i ∈ J10̄ andm+i, where i ∈ J11̄, and Cs, where s ≥ 2, is an invertible
submatrix in Cs−1ZIs that consists of the lines with numbers i ∈ Js0̄ and
ks−1+i, where i ∈ J1̄s. This Lie supergroup action induces a Lie superalgebra
homomorphism

µ : glm|n(C) → v(F
m|n
k|l ).

In case r = 1 in [OS, Lemma 1] it was proven that Kerµ = 〈Em+n〉, where
Em+n is the identity matrix of size m+n. In general case r > 1 we also have
Kerµ = 〈Em+n〉 and the proof is similar to [OS, Lemma 1]. We see that µ
induces an injective homomorphism of Lie superalgebras

µ̄ : glm|n(C)/〈Em+n〉 → v(F
m|n
k|l ).

We will show that with some exceptions this homomorphism is an isomor-
phism.

2.2 Superbundles and projectable vector fields

Recall that a morphism of complex-analytic supermanifolds M to N is a
pair f = (f0, f

∗), where f0 : M0 → N0 is a holomorphic map and f ∗ : ON →
(f0)∗(OM) is a homomorphism of sheaves of superalgebras.

Definition 1. A superbundle is a set (M,B, p,S), where S is fiber, B is base
space, M is total space and p = (p0, p

∗) : M → B is projection, such that
there exists an open covering {Ui} on B0, isomorphisms ψi : (p

−1
0 (Ui),OM) →

(Ui,OB)× S and the following diagram is commutative:

(p−1
0 (Ui),OM) (Ui,OB)× S

(Ui,OB) (Ui,OB)

p

ψi

id

pr
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where pr is the natural projection.

Usually we will denote a superbundle (M,B, p,S) just by M.

Remark. From the form of transition functions (3) it follows that for r > 1

the supermanifold F
m|n
k|l is a superbundle with baseGrm|n,k1|l1 and fiber F

k1|l1
k′|l′ ,

where k′ = (k2, . . . , kr) and l
′ = (l2, . . . , lr). In local coordinates introduced

above the projection p is given by

(Z1, Z2, . . . Zn) 7−→ (Z1).

Moreover, Formulas (4) tell us that the projection p is equivariant with re-

spect to the action of the supergroup GLm|n(C) on F
m|n
k|l and Grm|n,k1|l1.

Let p = (p0, p
∗) : M → N be a morphism of supermanifolds.

Definition 2. A vector field v ∈ v(M) is called projectable with respect to
p, if there exists a vector field v1 ∈ v(N ) such that

p∗(v1(f)) = v(p∗(f)) for all f ∈ ON .

In this case we say that v is projected to v1.

Projectable vector fields form a super Lie subalgebra v(M) in v(M). In
case if p is a projection of a superbundle, the homomorphism p∗ : ON →
p∗(OM) is injective. Hence, any projectable vector field v is projected into
unique vector field v1 = P(v) and we have the following map

P : v(M) → v(N ), v 7→ v1.

It is a homomorphism of Lie superalgebras. A vector field v ∈ v(M) is called
vertical, if P(v) = 0. Vertical vector fields form an ideal KerP in v(M).

We will need the following proposition proved in [B].

Proposition 1. Let p : M → B be the projection of a superbundle with
fiber S. Assume that OS(S0) = C, i.e. any global holomorphic function is
constant. Then any holomorphic vector field from v(M) is projectable with
respect to p and we have a homomorphism of Lie superalgebras ν : v(M) →
v(B).

Let p : M → B be a superbundle with fiber S. We define the sheaf
W on B0 in the following way. We asign to any open set U ⊂ B0 the set
of all vertical vector fields on the supermanifold (p−1

0 (U),OM). In [V1] the
following proposition was proven.

Proposition 2. Assume that S0 is compact. Then W is a localy free sheaf
of OB-modules and dimW = dim v(S).
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Clearly, the Lie algebra W(B0) coincides with the ideal of all vertical
vector fields in v(M). Let us describe the corresponding to W graded sheaf.
Consider the following filtration in OB

OB = J 0 ⊃ J 1 ⊃ J 2 . . .

where J is the sheaf of ideals in OB generated by odd elements. We have
the corresponding graded sheaf of superalgebras

ÕB =
⊕

p≥0

(ÕB)p, where (ÕB)p = J p/J p+1.

Putting W(p) = J pW we get the following filtration in W:

W = W(0) ⊃ W(1) ⊃ . . . . (5)

We define the Z-graded sheaf of FB0
-modules by

W̃ =
⊕

p≥0

W̃p, where W̃p = W(p)/W(p+1). (6)

Here FB0
is the structure sheaf of the underlying space B0. The Z2-grading in

W(p) induces the Z2-grading in W̃p. Using Proposition 2 we get the following
result.

Proposition 3. Assume that S0 is compact. Then W̃0 is a locally free sheaf
of FB0

-modules. Any fiber of the corresponding vector bundle is isomorphic
to v(S).

2.3 The Borel-Weyl-Bott Theorem

To calculate the Lie superalgebra of vector fields we will use the Borel-
Weyl-Bott Theorem, see for example [A] for details. This theorem permits
to compute cohomology with values in a holomorphic homogeneous bundle
over a flag manifold. For completeness we formulate it here adapting to our
notations and agreements.

Let G = GLm(C)× GLn(C) be the underlying space of GLm|n(C), P be
a parabolic subgroup in G and R be the reductive part of P . Assume that
Eϕ → G/P is the homogeneous vector bundle corresponding to a represen-
tation ϕ of P in E = (Eϕ)P . Denote by Eϕ the sheaf of holomorphic section
of this vector bundle. In the Lie superalgebra glm|n(C)0̄ ≃ glm(C)⊕ glm(C)
we fix the Cartan subalgebra t = t1 ⊕ t2, where

t1 = {diag(µ1, . . . , µm)} and t2 = {diag(λ1, . . . , λn)},
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the following system of positive roots:

∆+ = ∆+
1 ∪∆+

2 ,

where
∆+

1 = {µi − µj, i < j} and ∆+
2 = {λp − λq, p < q},

and the following system of simple roots Φ = Φ1 ∪ Φ2, where

Φ1 = {α1, ..., αn−1}, αi = µi − µi+1, Φ2 = {β1, ..., βn−1}, βp = λp − λp+1.

Denote by t∗(R) a real subspace in t∗ spaned by µj and λi. Consider the
scalar product ( , ) in t∗(R) such that the vectors µj, λi form an orthonormal
basis. An element γ ∈ t∗(R) is called dominant if (γ, α) ≥ 0 for all α ∈ ∆+.

Theorem 1. [Borel-Weyl-Bott]. Assume that the representation ϕ : P →
GL(E) is completely reducible and λ1, ..., λs are highest weights of ϕ|R. Then
theG-moduleH0(G/P, Eϕ) is isomorphic to the sum of irruducible G-modules
with highest weights λi1 , ..., λit , where λia are dominant highest weights.

2.4 Holomorphic functions on flag supermanifolds

Holomorphic functions on homogeneous supermanifolds and in particu-
lar on flag supermanifolds were studied in [V3]. It is well-known that any
holomorphic function on a connected compact complex manifold is constant.
This statement is false for a supermanifold with a connected compact under-
lying space. However in case of flag supermanifolds the following theorem
holds true:

Theorem 2. [V3] Consider the flag supermanifold M = F
m|n
k|l . Assume that

(k|l) 6= (m, . . . ,m, ks+2, . . . , kr)|(l1, . . . , ls, 0, . . . , 0),

(k|l) 6= (k1, . . . , ks, 0, . . . , 0)|(n, . . . , n, ls+2, . . . , lr),
(7)

for any s ≥ 0. Then OM(M0) = C. In other words under conditions (7) any

holomorphic function on F
m|n
k|l is constant.

Otherwise
F

m|n
k|l ≃ (pt,

∧
(mn))× (Fm

k × Fn
l )

and OM(M0) =
∧
(mn), where

∧
(mn) is the Grassmann algebra with mn

generators.

9



3 Vector fields on flag supermanifolds

3.1 Vector fields on super-Grassmannians

In previous sections we have seen that Grm|n,k|l is a GLm|n(C)-homogene-
ous superspace. The action of GLm|n(C) on Grm|n,k|l is given by Formulas
(4). This action induces the Lie algebra homomorphism

µ : glm|n(C) → v(Grm|n,k|l).

The kernel of this homomorphism is eqaul to 〈Em+n〉, [OS, Lemma 1]. Fur-
ther we will use the following notation:

pglm|n(C) := glm|n(C)/〈Em+n〉.

The Lie superalgebra of holomorphic vector fields on super-Grassmannian
Grm|n,k|l was computed in [Bun, OS, Oni, Ser].

Theorem 3. The homomorphism µ : glm|n(C) → v(Grm|n,k|l) is almost
always surjective and

v(Grm|n,k|l) ≃ pglm|n(C).

The exeptional cases are the following.

1.1 For the super-Grassmannian Gr2|2,1|1 we have

v(Gr2|2,1|1) ≃ psl2|2(C)+⊃ sl2(C),

where psl2|2(C) = sl2|2(C)/< E4 >.

1.2 For Gr1|n,0|n−1 ≃ Grn|1,n−1|0 ≃ Grn|1,1|1 ≃ Gr1|n,1|1, n > 2, we have

v(Gr1|n,0|n−1) ≃Wn = Der
∧

(ζ1, . . . , ζn).

1.3 In the degenerate case Grm|n,0|n ≃ Grm|n,m|0 we have

v(F
m|n
0|n ) ≃Wmn = Der

∧
(ζ1, . . . , ζmn).

1.4 For Gr2|2,0|1 ≃ Gr2|2,1|0 ≃ Gr2|2,1|2 ≃ Gr2|2,2|1 we have

v(Gr2|2,0|1) ≃ H̃4+⊃ 〈z〉,

where ad z acts on the Lie superalgebra of Cartan type H̃4 as the
grading operator.

10



In case

0 < k < m and 0 < l < n, (m|n, k|l) 6= (2|2, 1|1),

the Lie superalgebra of vector fields was computed in [OS]. Results 1.1
and 1.2 of Theorem 3 were obtained in [Bun] (see also [OS] for an explicit
description of the Lie superalgebra) and [Oni, Ser], respectively. Result 1.3
of Theorem 3 is obvious. Result 1.4 of Theorem 3 follows from arguments
in [Ser], Proof of Theorem 2.6. Note that in the statement of Theorem 2.6
in [Ser] and also in [OS, Theorem 7] the Lie superalgebra of vector fields in
case 1.4 was pointed incorrectly.

We will need an explicit description of the Lie superalgebra of holomorphic
vector fields on Gr2|2,1|1, Case 1.1 of Theorem 3, in the following local chart




x ξ
1 0
η y
0 1


 .

The image of gl2|2(C)0̄ with respect to the homomorphism µ from Theorem
3 is given by:

µ(E11) = x
∂

∂x
+ ξ

∂

∂ξ
, µ(E12) =

∂

∂x
, µ(E22) = −x

∂

∂x
− η

∂

∂η
,

µ(E21) = −x2
∂

∂x
− xη

∂

∂η
− xξ

∂

∂ξ
+ ξη

∂

∂y
, µ(E34) =

∂

∂y
,

µ(E43) = −y2
∂

∂y
− yξ

∂

∂ξ
− yη

∂

∂η
− ξη

∂

∂x
, µ(E33) = y

∂

∂y
+ η

∂

∂η
,

µ(E44) = −y
∂

∂y
− ξ

∂

∂ξ
.

(8)

The image of gl2|2(C)1̄ with respect to the homomorphism µ from Theorem
3 is given by:

µ(E14) =
∂

∂ξ
, µ(E32) =

∂

∂η
, µ(E13) = η

∂

∂x
+ y

∂

∂ξ
,

µ(E31) = ξ
∂

∂y
+ x

∂

∂η
, µ(E23) = −xη

∂

∂x
− xy

∂

∂ξ
+ yη

∂

∂y
,

µ(E41) = −yξ
∂

∂y
− xy

∂

∂η
+ xξ

∂

∂x
, µ(E24) = −x

∂

∂ξ
+ η

∂

∂y
,

µ(E42) = −y
∂

∂η
+ ξ

∂

∂x
.

(9)
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Additional holomorphic on Gr2|2,1|1 vector fields are

η
∂

∂ξ
, ξ

∂

∂η
. (10)

A direct computation shows that

v(Gr2|2,1|1) ≃ pgl2|2(C)0̄ ⊕ pgl2|2(C)1̄ ⊕ 〈η
∂

∂ξ
, ξ

∂

∂η
〉 (11)

as gl2|2(C)0̄-modules.
Let us give an explicit description of the Lie superalgebra of holomorphic

vector fields on Gr2|2,1|2, Case 1.4 of Theorem 3 in the following local chart



x ξ1 ξ2
1 0 0
0 1 0
0 0 1


 . (12)

The definition of the Lie superalgebra H̃4 can be found in [Kac]. For com-
pleteness we remind it here. We have H̃4 ⊂ Der

∧
(θ1, . . . , θ4) and H̃4 consists

of all elements in the form:

Df =
4∑

i=1

∂f

∂θi

∂

∂θi
, f ∈

∧
(θ1, . . . , θ4), f(0) = 0.

The Lie superalgebra H̃4 is Z-graded and in chosen chart the image of an
injective homomorphism H̃4 → v(Gr2|2,1|2) is given by the following vector
fields:

(H̃4)−1 =
〈 ∂

∂ξ1
,

∂

∂ξ2
, x

∂

∂ξ1
, x

∂

∂ξ2

〉
;

(H̃4)0 =
〈 ∂

∂x
, x

∂

∂x
+ ξ1

∂

∂ξ1
, x

∂

∂x
+ ξ2

∂

∂ξ2
, ξ1

∂

∂ξ2
,

ξ2
∂

∂ξ1
, xξ1

∂

∂ξ1
+ xξ2

∂

∂ξ2
+ x2

∂

∂x

〉
;

(H̃4)1 =
〈
ξ1
∂

∂x
, ξ2

∂

∂x
, xξ1

∂

∂x
+ ξ1ξ2

∂

∂ξ2
, xξ2

∂

∂x
− ξ1ξ2

∂

∂ξ1

〉
;

(H̃4)2 =
〈
θ = ξ1ξ2

∂

∂x

〉
;

(13)

The Z-graded operator mentioned in Theorem 3 is given by:

z = ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2
.
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We will call the super-Grassmannians from 1.1-1.4 of Theorem 3 excep-

tional. Note that the super-Grassmannian Gr0|n,0|l ≃ Grn|0,l|0 is just usual
Grassmannians isomorphic to Grn,l. It is well-known that

v(Grn,l) ≃ pgln(C),

see [A] for details.

3.2 Vector fields on flag supermanifolds. Main case

Assume that r > 1. From now on we use the following notations:

M = F
m|n
k|l , B = Grm|n,k1|l1 and S = F

k1|l1
k′|l′ ,

where k′ = (k2, . . . , kr) and l
′ = (l2, . . . , lr). If OS(S0) = C, then by Proposi-

tion 1 the projection of the superbundle M → B determines the homomor-
phism of Lie superalgebras

P : v(M) → v(B).

This projection is GLm|n(C)-equivariant. Hence for the natural Lie superal-
gebra homomorphisms µ : glm|n(C) → v(M) and µB : glm|n(C) → v(B) we
have

µB = P ◦ µ.

By Theorem 3, the homomorphisms µB and hence the homomorphism P is
almost always surjective. We will prove that P is injective. Hence,

µ = P−1 ◦ µB (14)

is surjective and
v(M) ≃ glm|n(C)/〈Em+n〉.

In previous section we constructed a locally free sheaf W̃ on B0. The sheaf
W possesses the natural action of the Lie group G = GLm(C)×GLn(C), be-
cause G is the underlying space of GLm|n(C). This action preserves the

filtration (5) and induces the action in the sheaf W̃. Hence the vector bun-
dle W0 → B0 corresponding to the localy free sheaf W̃0 is homogeneous.
Consider the local chart on the super-Grassmannian B corresponding to

I10̄ = {m− k1 + 1, . . . , m} and I11̄ = {n− l1 + 1, . . . , n}. (15)
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The coordinate matrix ZI1 in this case has the following form

ZI1 =




X1 Ξ1

Ek1 0
H1 Y1
0 El1


 . (16)

Denote by o the point in B0 defined by the following equations:

X1 = Y1 = Ξ1 = H1 = 0.

Then B0 is naturally isomorphic to G/H , where H is the stabilizer of o. An
easy computation shows that H contains all matrices in the following form:




A1 0 0 0
C1 B1 0 0
0 0 A2 0
0 0 C2 B2


 , (17)

where

A1 ∈ GLm−k1(C), A2 ∈ GLn−l1(C), B1 ∈ GLk1(C) and B2 ∈ GLl1(C).

The reductive part R of H is given by the following equations

Ci = 0, i = 1, 2.

Let us compute the representation ψ of H in the fiber (W0)o of W0 over
the point o. We identify (W0)o with the Lie superalgebra of holomorphic
vector fields v(S), see Proposition 3. Let us choose an atlas on M defined
by I1 = (I10̄, Is1̄), see (15), and by certain Is, s = 2, . . . , r. In notations (16)
and (17) the group H acts in the chart defined by ZI1 in the following way:




A1 0 0 0
C1 B1 0 0
0 0 A2 0
0 0 C2 B2







X1 Ξ1

Ek1 0
H1 Y1
0 El1


 =




A1X1 A1Ξ1

C1X1 +B1 C1Ξ1

A2H1 A2Y1
C2H1 C2Y1 +B2


 .

Hence, for ZI2 we have

(
C1X1 +B1 C1Ξ1

C2H1 C2Y1 +B2

)(
X2 Ξ2

H2 Y2

)
=

=

(
(C1X1 +B1)X2 + C1Ξ1H2 (C1X1 +B1)Ξ2 + C1Ξ1Y2
C2H1X2 + (C2Y1 +B2) H2 C2H1 Ξ2 + (C2Y1 +B2)Y2

)
.

(18)
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Note that the local coordinates of ZIs, s ≥ 2, can be interpreted as local
coordinates on the fiber S of the superbundle M. To obtain the action of H
in the fiber (W0)o in these coordinates we put

X1 = Y1 = 0 and Ξ1 = H1 = 0

in (18) and modify ZIs, s ≥ 3, accordingly. We see that the nilradical of
H and the subgroup GLm−k1(C) × GLn−l1(C) in R act trivially on S and
that the subgroup GLk1(C)×GLl1(C) ⊂ R acts in the natural way. In other
words the action of H in S over o is given by the following formulas:

(
B1 0
0 B2

)(
X2 Ξ2

H2 Y2

)
=

(
B1X2 B1Ξ2

B2H2 B2Y2

)
. (19)

This means that H acts as the underlying space of the Lie supergroup
GLk1|l1(C) on the flag supermanifold S, see (4). Furthermore assume that

v(S) ≃ glk1|l1(C)/〈Ek1+l1〉 =

{(
Z1 T1
T2 Z2

)
+ < Ek1+l1 >

}
,

where Z1 ∈ glk1(C) and Z2 ∈ gll1(C). Then the induced action of the Lie
group GLk1(C)×GLl1(C) on (W0)o = v(S) coinsides with the adjoint action
of the underlying Lie group of the Lie supergroup GLk1|l1(C). More precisely,
we have

(
B1 0
0 B2

)((
Z1 T1
T2 Z2

)
+ < Ek1+l1 >

)(
B−1

1 0
0 B−1

2

)
=

(
B1Z1B

−1
1 B1T1B

−1
2

B2T2B
−1
1 B2Z2B

−1
2

)
+ < Ek1+l1 >,

(20)

where B1 ∈ GLk1(C) and B2 ∈ GLl1(C).
Denote by Adk1 and Adl1 the adjoint representations of GLk1(C) and

GLl1(C) on slk1(C) and sll1(C), respectively, and by ρk1 and ρl1 the standard
representations of GLk1(C) and GLl1(C) in C

k1 and C
l1 , respectively. We

denote by 1 the one dimensional trivial representation of GLk1(C)×GLl1(C).
The following lemma follows from (20).

Lemma 1. The representation ψ of H in the fiber (W0)o = v(S) is com-
pletely reducible. The nilradical of H acts trivially in (W0)o. If v(S) ≃
glk1|l1(C)/〈Ek1+l1〉, then

ψ|R =





Adk1 +Adl1 +ρk1 ⊗ ρ∗l1 + ρl1 ⊗ ρ∗k1 + 1 for k1, l1 > 0,
Adk1 for k1 > 0, l1 = 0,
Adl1 for k1 = 0, l1 > 0.

(21)
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Further we will use the chart on F
m|n
k|l defined by Is = Is0̄ ∪ Is1̄, where I1̄i

is as above, and

Is0̄ = {ks−1 − ks + 1, . . . , ks−1}, Is1̄ = {ls−1 − ls + 1, . . . , ls−1}

for s ≥ 2. The coordinate matrices of this chart have the following form

ZIs =




Xs Ξs

Eks 0
Hs Ys
0 Els


 , s = 1, . . . k,

where again the local coordinates are

Xs = (xsij), Ys = (ysij), Ξs = (ξsij) and Hs = (ηsij).

We denote this chart by U and the corresponding chart on B by UB. In other
words, UB is given by the coordinate matrix (16).

Lemma 2. The vector fields ∂
∂ξ1

ij

and ∂
∂η1

ij

are fundamental. This is they are

induced by the natural action of GLm|n(C) on M.

Proof. Let us prove this statement for example for the vector field ∂
∂ξ1

11

. This

vector field corresponds to the one-parameter subgroup exp(τE1,a), where
a = m + n − l1 + 1 and τ is an odd parameter. Indeed, the action of this
subgroup is given by




X1 Ξ1

Ek1 0
H1 Y1
0 El1


 7→




X1 Ξ̃1

Ek1 0
H1 Y1
0 El1


 and ZIs 7→ ZIs, s ≥ 2,

where

Ξ̃1 =




τ + ξ111 . . . ξ11l1
...

. . .
...

ξ1m−k1,1
. . . ξ1m−k1,l1


 .�

Let us choose a basis vi, where i = 1, . . .dim(v(S)), in v(S). Any holo-
morphic vertical vector field on M can be written uniquely in the form

w =
∑

q

fqvq, (22)
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where fq are holomorphic functions on U depending only on coordinates from
ZI1. We will need the following two lemmas:

Lemma 3. If KerP 6= {0}, then dimW(0)(B0) > dimW(1)(B0).

Note that since B0 is compact, dimW(i)(B0) <∞ for all i.

Proof. By definition we have the inclusion of sheaves W(1) →֒ W(0) and hence
we have the inclusion of the vector spaces of global sections

W(1)(B0) →֒ W(0)(B0).

Therefore we need to show that there exists a vector field v ∈ W(0)(B0) such
that v /∈ W(1)(B0). Consider a vector field w ∈ W(1)(B0) written in the form
(22). Assume that there is a function fq that depends for example on odd
coordinate ξ1ij . Then w = ξ1ijw

′ + w′′, where w′ and w′′ are local vertical
vector fields and their coefficients (22) do not depend on ξ1ij, and w′ 6= 0.
Using Lemma 2 and the fact that KerP is an ideal in v(M), we see that

w′ = [
∂

∂ξ1ij
, w] ∈ KerP.

In particular, w′ is a global vertical vector field. In this way we can exclude
all odd coordinates ξ1ij and η1ij . Therefore there exists a vector field v from
KerP such that v ∈ W(0)(B0) but v /∈ W(1)(B0).�

Lemma 4. We have

W̃0(B0) ≃





C, 0 < k1 < m, 0 < l1 < n;
r1 ⊕ r2 ⊕ C, 1 < k1 = m, 0 < l1 < n;
r3 ⊕ r4 ⊕ C, 0 < k1 < m, 1 < l1 = n;
r2 ⊕ C, 1 = k1 = m, 0 < l1 < n;
r3 ⊕ C, 0 < k1 < m, 1 = l1 = n;
{0}, 0 < k1 < m, 0 = l1 ≤ n, or

0 = k1 ≤ m, 0 < l1 < n, or
0 = k1 < m, 1 = l1 ≤ n, or
1 = k1 ≤ m, 0 = l1 < n;

r1, 1 < k1 = m, 0 = l1 < n;
r4, 0 = k1 < m, 1 < l1 = n,

(23)

where r1, r2, r3, r4 are irreducible slm(C)⊕ sln(C)-modules with the highest
weights µ1 − µm, µ1 − λn, λ1 − µm and λ1 − λn respectively. The trivial
1-dimensional module C corresponds to the highest weight 0.

Proof. We compute the vector space of global sections ofW0 using the Borel-
Weyl-Bott Theorem 1. The representation ψ of H in (W0)o is described in
Lemma 1. From (21) it follows that the highest weights of ψ have the form:
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• µm−k1+1−µm, µm−k1+1−λn, λn−l1+1−µm, λn−l1+1−λn, 0 for k1, l1 > 1;

• µm − λn, λn−l1+1 − µm, λn−l1+1 − λn, 0 for k1 = 1, l1 > 1;

• µm−k1+1 − µm, µm−k1+1 − λn, λn − µm, 0 for k1 > 1, l1 = 1;

• µm − λn, λn − µm, 0 for k1 = 1, l1 = 1;

• µm−k1+1 − µm for k1 > 1, l1 = 0;

• λn−l1+1 − λn for k1 = 0, l1 > 1.

(Note that for k1 = 1, l1 = 0 and k1 = 0, l1 = 1 the representation space of
ψ is trivial.) Therefore the dominant highest weights of ψ have the following
form:

• 0, if 0 < k1 < m and 0 < l1 < n;

• 0, µ1 − µm, µ1 − λn, if 1 < k1 = m, 0 < l1 < n;

• 0, µ1 − λn, if 1 = k1 = m, 0 < l1 < n;

• 0, λ1 − λn, λ1 − µm, if 0 < k1 < m, 1 < l1 = n;

• 0, λ1 − µm, if 0 < k1 < m, 1 = l1 = n;

• µ1 − µm, if 1 < k1 = m, 0 = l1 < n;

• λ1 − λn, if 0 = k1 < m, 1 < l1 = n.

We have no dominant weights in the following cases:

• 0 < k1 < m, 0 = l1 ≤ n;

• 0 = k1 ≤ m, 0 < l1 < n;

• 0 = k1 < m, 1 = l1 ≤ n;

• 1 = k1 ≤ m, 0 = l1 < n.

By Borel-Weyl-Bott Theorem we get the result.�

We are ready to prove the following theorem.

Theorem 4. Assume that r > 1. If

OS(S0) = C, v(S) ≃ pglk1|l1(C), (k1, l1) 6= (m, 0) and (k1, l1) 6= (0, n),

then KerP = {0}.
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Proof. Consider the super-stabilizer H ⊂ GLm|n(C) of o. It contains all
super-matrices of the following form:




A1 0 ∗ 0
C1 B1 ∗ D1

∗ 0 A2 0
∗ D2 C2 B2


 , (24)

where the size of all matrices is as in Formula (17). Consider also the following
Lie subsupergroup L in H:

(
B1 D1

D2 B2

)
.

Clearly, L ≃ GLk1|l1(C). Repeating computations (18) for super-matrix (24),
we see that L acts on S in the natural way, see (4), and the l-module (W0)o ≃
pglk1|l1(C) is isomorphic to the adjoint l-module. Here l ≃ glk1|l1(C) is the
Lie superalgebra of L.

Let π : W → W̃0 = W/W(1) be the natural map and πo : W → (W0)o be
the composition of π and of the evaluation map at the point o. We have the
following commutative diagram:

W(B0)
[X, · ]
−−−→ W(B0)

πo

y πo

y

(W0)o
[X, · ]
−−−→ (W0)o

,

where X ∈ l. (Note that the vector space W(B0) is an ideal in v(M) and in
particular it is invariant with respect to the action of L.) Denote by V the
image πo(W(B0)). From the commutativity of this diagram it follows that

V ⊂ (W0)o ≃ pglk1|l1(C)

is invariant with respect to the adjoint representation of pglk1|l1(C). There-
fore, V is an ideal in pglk1|l1(C).

Let us describe ideals of the Lie superalgebra pglk1|l1(C), where (k1, l1) 6=
(1, 1), see [Kac] for details. (The Lie superalgebra pgl1|1(C) is nilpotent. We

do not consider this case here because OS(S0) 6= C for S = F
1|1
k′|l′.) This Lie

superalgebra contains two trivial ideals I = {0}, pglk1|l1(C) and it has one
proper ideal

pslk1|k1(C) = slk1|k1(C)/〈E2k1〉

for k1 = l1.
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Clearly, we have V ⊂ Im(γ), where γ : W̃0(B0) → (W0)o is the evaluation
map. By Lemma 4, we see that Im(γ) never coinsides with pglk1|l1(C) or
pslk1|k1(C). Hence, V = {0}. In other words, all sections of π(W(B0)) are
equal to 0 at the point o. Since W0 is a homogeneous bundle, we get that
π(W(B0)) are equal to 0 at any point. Therefore, π(W(B0)) = {0} and

W(B0)(0) ≃ W(B0)(1).

From Lemma 3 it follows that KerP = {0}.�

Using Theorem 4 and Formula (14), we get the following statement:

Theorem 5. Assume that r > 1. If

OS(S0) = C, v(F
m|n
k1|l1

) ≃ pglm|n(C) and v(F
k1|l1
k′|l′ ) ≃ pglk1|l1(C),

then
v(F

m|n
k|l ) ≃ pglm|n(C).

3.3 Vector fields on flag supermanifolds, some excep-

tional cases

3.3.1 The base B is an exceptional super-Grassmannian

Assume that r > 1, OS(S0) = C and B = F
m|n
k1|l1

is one of the following
super-Grassmanians:

a) F
m|n
k1|l1

= F
m|n
0|n or F

m|n
m|0 , case 1.3 of Theorem 3.

b) F
m|n
k1|l1

= F
2|2
1|2 or F

2|2
2|1, case 1.4 of Theorem 3. (We do not consider super-

Grassmannians F
2|2
1|0 and F

2|2
0|1 here, because in these cases OS(S0) 6= C.)

c) F
m|n
k1|l1

= F
1|n
0|n−1, where n > 2, or F

m|1
m−1|0, where m > 2, case 1.2 of

Theorem 3. This case we will consider in a separate paper.

d) F
m|n
k1|l1

= F
2|2
1|1, case 1.1 of Theorem 3. In this case OS(S0) 6= C. We do

not consider this case here.

Case a. Without loss of generality we may consider only the case F
m|n
k1|l1

=

F
m|n
0|n . In this case the base space F

m|n
0|n is a superpoint, i.e. it is a superdomain

with the underlying space {pt}, one point, and with mn odd coordinates.
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Since F
m|n
k|l is a superbundle with the base space isomorphic to a superpoint,

we have

F
m|n
k|l = F

m|n
0|n × F

0|n
k′|l′, where k′ = (0, . . . , 0) and l′ = (l2, . . . , lr).

Our goal now is to prove the following theorem.

Theorem 6. Assume that r > 1 and (k1, l1) = (m, 0) or (k1, l1) = (0, n).
Then

v(F
m|n
k|l ) =Wmn ⊂+

(∧
(mn)⊗ pgln(C)

)
,

where Wmn = Der(
∧
(mn)).

Proof. The result follows from the following facts:

F
m|n
k|l = F

m|n
0|n × F

0|n
k′|l′, OS(S0) = C, OB(B0) =

∧
(mn),

v(F
m|n
0|n ) ≃Wmn, v(F

0|n
0|l′) ≃ pgln(C).

In more details, since OS(S0) = C, we have a Lie superalgebra homomor-
phism

P : v(F
m|n
k|l ) → v(F

m|n
0|n ) ≃Wmn.

Since the bundle projection F
m|n
k|l → F

m|n
0|n is just the projection to the first

factor
F

m|n
k|l = F

m|n
0|n × F

0|n
k′|l′ → F

m|n
0|n ,

all vector fields on F
m|n
0|n can be lifted to F

m|n
k|l . The kernel of P is isomorphic

to
∧
(mn)⊗ pgln(C). The proof is complete.�

Case b. Assume that r = 2. Without loss of generality we may consider
only the case F

m|n
k1|l1

= F
2|2
1|2. Under restriction OS(S0) = C the fiber S can be

one of the following super-Grassmanians:

S = F
1|2
1|1 or F

1|2
0|1.

We have seen that v(F
2|2
1|2) ≃ H̃4+⊃ 〈z〉, see (13), Theorem 3. A standard

computation shows that the image of gl2|2(C) in v(F
2|2
1|2) is

(H̃4)−1 ⊕ (H̃4)0 ⊕ (H̃4)1 ⊕ 〈z〉 ≃ pgl2|2(C).

Therefore,
v(F

2|2
1|2) ≃ pgl2|2(C)⊕ 〈θ〉, (25)
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as vector superspaces. (See (13) for the definition of θ.) By Theorem 2 we
have OS(S0) = C. Hence by Proposition 1 we have a homomorphism of Lie
superalgebras

P : v(F
2|2
k|l ) → v(F

2|2
1|2).

By Theorem 3 we see that v(S) ≃ pgl1|2(C). Therefore by Theorem 4 the ho-
momorphism P is injective. The vector fields from pgl2|2(C) are fundamental
with respect to the action of the Lie superalgebra gl2|2(C). Hence they can

be lifted to the flag supermanifold F
2|2
k|l . Therefore we need to find P−1(θ).

We will show that θ /∈ Im(P), i.e. θ cannot be lifted to F
2|2
k|l .

Theorem 7. We have

v(F
2|2
(1,1)|(2,1)) ≃ pgl2|2(C) and v(F

2|2
(1,0)|(2,1)) ≃ pgl2|2(C).

Proof. Consider the following chart on F
2|2
(1,1)|(2,1):

ZI1 =




x ξ1 ξ2
1 0 0
0 1 0
0 0 1


 , ZI2 =




1 0
η y
0 1


 (26)

Assume that w := P−1(θ) is well-defined. Since all vector fields on F
2|2
(1,1)|(2,1)

are projectable, in cootdinates (26) w is equal to θ+ v, where v = f ∂
∂y

+ g ∂
∂η

is a vertical vector field and f, g are holomorphic functions in coordinates
(26). Let us find f and g. We need the following fundamental vector fields

on F
2|2
(1,1)|(2,1) written in coordinates (26):

E13 7−→
∂

∂ξ1
, E14 7−→

∂

∂ξ2
, E42 7−→ ξ2

∂

∂x
+ y

∂

∂η
,

E32 7−→ ξ1
∂

∂x
−

∂

∂η
, E34 7−→ −ξ1

∂

∂ξ2
−

∂

∂y
.

(27)

Here we denote by Eij the elementary matrix from gl2|2(C).
Since KerP = {0}, using (27), we get

[
∂

∂ξ1
, w] = ξ2

∂

∂x
+
∂f

∂ξ1

∂

∂y
+
∂g

∂ξ1

∂

∂η
= ξ2

∂

∂x
+ y

∂

∂η
;

[
∂

∂ξ2
, w] = −ξ1

∂

∂x
+
∂f

∂ξ2

∂

∂y
+
∂g

∂ξ2

∂

∂η
= −ξ1

∂

∂x
+

∂

∂η
.
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Hence,
∂f

∂ξ1
= 0,

∂g

∂ξ1
= y,

∂f

∂ξ2
= 0,

∂g

∂ξ2
= 1.

Furthermore,

[ξ1
∂

∂ξ2
+

∂

∂y
, w] = ξ1

∂

∂η
+
∂f

∂y

∂

∂y
+
∂g

∂y

∂

∂η
= 0.

Hence, ∂f

∂y
= 0 and ∂g

∂y
= −ξ1. Now we see that

∂2g

∂ξ1∂y
= −1,

∂2g

∂y∂ξ1
= 1.

This is a contradiction. Therefore,

P−1(z) = ∅ and v(F
2|2
(1,1)|(2,1)) ≃ pgl2|2(C).

The proof in the case F
2|2
(1,0)|(2,1) is similar.�

3.3.2 The fiber S is an exceptional super-Grassmannian

Assume that r = 2, OS(S0) = C and S = F
k1|l1
k2|l2

is one of the following
super-Grassmanians:

a) S = F
2|2
1|1, case 1.1 of Theorem 3;

b) S = F
2|2
0|1, F

2|2
1|0, F

2|2
1|2 or F

2|2
2|1, case 1.4 of Theorem 3;

c) S = F
1|l1
0|l1−1, F

k1|1
k1−1|0, F

1|l1
1|1 or F

k1|1
1|1 , where n > 2, case 1.2 of Theorem 3.

d) S = F
k1|l1
0|l1

or F
k1|l1
k1|0

, case 1.3 of Theorem 3. In both cases OS(S0) 6= C.
We do not consider this case here.

Our goal now is to prove the following theorem.

Theorem 8. Assume that r = 2 and the fiber S of the superbundle F
m|n
k|l is

a super-Grassmanian of type a or b. Then we have

v(F
m|n
k|l ) ≃ pglm|n(C).

First of all let us compute the representation ψ of the stabilizer H in
these cases. Formula (19) tells us that the action of H in S coinsides with
the restriction of this action on GL2|2(C)0̄. We need the following lemma:

Lemma 5. The representation ψ of H in the fiber (W0)o is completely
reducible and its highest weights are:
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1. µm−1−µm, λn−1−λn, µm−1−λn, λn−1−µm, 0, µm−1+µm−λn−1−λn,
λn−1 + λn − µm−1 − µm, in case a.

2. µm−1−µm, λn−1−λn, µm−1−λn, λn−1−µm, 0, µm−1+µm−λn−1−λn,

in case b, super-Grassmannians F
2|2
0|1 and F

2|2
1|2.

3. µm−1−µm, λn−1−λn, µm−1−λn, λn−1−µm, 0, −µm−1−µm+λn−1+λn,

in case b, super-Grassmannians F
2|2
1|0 and F

2|2
2|1.

Proof. As in Section 3.2, we see that the nilradical of H and the subgroup
GLm−2(C) × GLn−2(C) in H act trivialy on S. The subgroup GL2(C) ×
GL2(C) acts in the natural way. Consider Decomposition (11). We computed
already highest weights of gl2|2(C)0̄-module pgl2|2(C). They are

µm−1 − µm, λn−1 − λn, µm−1 − λn, λn−1 − µm, 0. (28)

Using the explicite description of v(F
2|2
1|1) given by (8), (9) and (10), we get:

[µm−1µ(E11) + µmµ(E22) + λn−1µ(E33) + λnµ(E44), ξ
∂

∂η
] =

(µm−1 + µm − λn−1 − λn)ξ
∂

∂η
;

[µm−1µ(E11) + µmµ(E22) + λn−1µ(E33) + λnµ(E44), η
∂

∂ξ
] =

(−µm−1 − µm + λn−1 + λn)η
∂

∂ξ
.

Here Eii, where i = 1 . . . 4, are elementary matrices from gl2|2(C)0̄. The
result follows.

Let us prove the second statement. Consider F
2|2
1|2 and decomposition (25)

of v(F
2|2
1|2). We see easily that the vector subspaces 〈θ〉 and pgl2|2(C) are in-

variant with respect to the action of the Lie algebra pgl2|2(C)0̄. Again the
vector space pgl2|2(C) was decomposed into a sum of irreducible representa-
tions, see (20). The highest weights of ψ|pgl2|2(C) are given by (28). Let us
compute the highest weight of 〈θ〉. The image of the Cartan subalgebra

diag(µm−1, µm)× diag(λn−1, λn)

with respect to the homomorphism µ : gl2|2(C)0̄ −→ v(F
2|2
1|2) in chart (12) is

given by

µ(E11) = x
∂

∂x
+ ξ1

∂

∂ξ1
+ ξ2

∂

∂ξ2
, µ(E22) = −x

∂

∂x
,

µ(E33) = −ξ1
∂

∂ξ1
, µ(E44) = −ξ2

∂

∂ξ2
.
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We have

[µm−1µ(E11) + µmµ(E22) + λn−1µ(E33) + λnµ(E44), θ] =

(µm−1 + µm − λn−1 − λn)θ.

The result follows.
Computations in the cases F

2|2
2|1, F

2|2
0|1 and F

2|2
1|0 are similar.�

Proof of Theorem 8. First of all let us compute the vector space of global
sections of the vector bundle W0 using Theorem 1. The dominant highest
weights of the representation ψ are in case a:

1. 0 if m > 2 and n > 2;

2. 0, µ1 − µ2, µ1 − λn, µ1 + µ2 − λn−1 − λn for m = 2 and n > 2;

3. 0, λ1 − λ2, λ1 − µm, λ1 + λ2 − µm−1 − µm for m > 2 and n = 2.

In case b for OS ≃ F
2|2
1|2 or F

2|2
0|1 the dominant highest weights of ψ are:

1. 0 for m > 2, n > 2;

2. 0, µ1 − µ2, µ1 − λn, µ1 + µ2 − λn−1 − λn for m = 2, n > 2;

3. 0, λ1 − λ2, λ1 − µm, for m > 2, n = 2.

In case b for OS ≃ F
2|2
2|1 or F

2|2
1|0 the dominant highest weights of ψ are:

1. 0 for m > 2, n > 2;

2. 0, µ1 − µ2, µ1 − λn for m = 2, n > 2;

3. 0, λ1 − λ2, λ1 − µm, −µm−1 − µm + λ1 + λ2 for m > 2, n = 2.

We restrict all weights on the Cartan subalgebra of slm(C) ⊕ sln(C) ⊂
glm(C)⊕ gln(C). By Theorem 1, in case a we have:

W̃0(B0) =





C, m > 2, n > 2;
C⊕ r1 ⊕ r2 ⊕ r3, m = 2, n > 2;
C⊕ r4 ⊕ r5 ⊕ r6, m > 2, n = 2.

Without loss of generality we consider only the case b, OS ≃ F
2|2
1|2 or F

2|2
0|1.

We have

W̃0(B0) =





C, m > 2, n > 2;
C⊕ r1 ⊕ r2 ⊕ r3, m = 2, n > 2;
C⊕ r4 ⊕ r5, m > 2, n = 2.
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Here r1, r2, r3, r4, r5, r6 are irreducible slm(C)⊕ sln(C)-modules with highest
weights µ1 − µ2, µ1 − λn, µ1 + µ2 − λn−1 − λn, λ1 − λ2, λ1 − µm and λ1 +
λ2−µm−1−µm, respectively, and C is the irreducible slm(C)⊕sln(C)-module
with weight 0.

We use notations of Theorem 4. We have seen that V is invariant with
respect to the action of Lie superalgebra pgl2|2(C). Consider the case a. In

case W̃0(B0) = C, we have V = C or {0}. Since pgl2|2(C) does not have any
1-dimensional ideals, the trivial module C is not pgl2|2(C)-invariant. Hence,

V = {0}. Consider the case W̃0(B0) ≃ C ⊕ r1 ⊕ r2 ⊕ r3. As in Proof of
Theorem 4, we see that any combination of H-modules γ(C), γ(r1), γ(r2)
and γ(r3) is not invariant with respect to pgl2|2(C), see explicit description
(8), (9) and (10). Hence again V = {0}. We finish the proof similarly to
Theorem 4.

Other cases are similar.�

3.4 Main result

We put k0 = m, l0 = n.

Theorem 9. Assume that r > 1 and that we have the following restrictions
on the flag type:

(ki, li) 6= (ki−1, 0), (0, li−1), i ≥ 2;

(ki−1, ki|li−1, li) 6= (1, 0|li−1, li−1 − 1), (1, 1|li−1, 1), i ≥ 1;

(ki−1, ki|li−1, li) 6= (ki−1, ki−1 − 1|1, 0), (ki−1, 1|1, 1), i ≥ 1;

k|l 6= (0, . . . , 0|n, l2, . . . , lr), k|l 6= (m, k2, . . . , kr|0, . . . , 0).

Then
v(F

m|n
k|l ) ≃ pglm|n(C).

If k|l = (0, . . . , 0|n, l2, . . . , lr) or k|l = (m, k2, . . . , kr|0, . . . , 0), then

v(F
m|n
k|l ) ≃Wmn ⊂+(

∧
(ξ1, . . . , ξmn)⊗ pgln(C)),

where Wmn = Der
∧
(ξ1, . . . , ξmn).

Note that the flag supermanifolds F
m|n
k|l and F

n|m
l|k are isomorphic.
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